标签 Java 下的文章 - 第 36 页 - 酷游博客
首页
关于
友链
Search
1
阿里的简历多久可以投递一次?次数多了有没有影响?可以同时进行吗?
45 阅读
2
Java中泛型的理解
40 阅读
3
Java 14 发布了,再也不怕 NullPointerException 了!
38 阅读
4
Java中的可变参数
37 阅读
5
该如何创建字符串,使用" "还是构造函数?
29 阅读
技术
登录
/
注册
找到
191
篇与
Java
相关的结果
- 第 36 页
2025-01-22
教你使用1行代码在Java中实现字符串的逆序
字符串逆序,这是非常普遍的一道算法面试题,相信很多刷过算法题的朋友都一定对这个问题并不陌生。 这个问题有很多衍生问题,他的实现方式也有很多。今天,就来教大家一个代码行数最好的实现方式。 那就是使用递归的方式,用1行代码实现字符串逆序。 代码如下: public class MyClass { public static void main(String args[]) { System.out.println(reverseString("Hollis is a Coder")); } private static String reverseString(String sentense) { return sentense.isEmpty() ? sentense:reverseString(sentense.substring(1)) + sentense.charAt(0); } } 输出结果: redoC a si silloH 如上,核心代码只有一行,那就是: return sentense.isEmpty() ? sentense : reverseString(sentense.substring(1)) + sentense.charAt(0); 这行代码中主要有两个知识点,分别使用了三目运算符和递归。 三目运算符 对于条件表达式b ? x : y,先计算条件b,然后进行判断。如果b的值为true,计算x的值,运算结果为x的值;否则,计算y的值,运算结果为y的值。 递归 程序调用自身的编程技巧称为递归( recursion)。递归做为一种算法在程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。
技术
# Java
酷游
1月22日
0
22
0
2025-01-22
深入理解Java中的逃逸分析
在Java的编译体系中,一个Java的源代码文件变成计算机可执行的机器指令的过程中,需要经过两段编译,第一段是把.java文件转换成.class文件。第二段编译是把.class转换成机器指令的过程。 第一段编译就是javac命令。 在第二编译阶段,JVM 通过解释字节码将其翻译成对应的机器指令,逐条读入,逐条解释翻译。很显然,经过解释执行,其执行速度必然会比可执行的二进制字节码程序慢很多。这就是传统的JVM的解释器(Interpreter)的功能。为了解决这种效率问题,引入了 JIT(即时编译) 技术。 引入了 JIT 技术后,Java程序还是通过解释器进行解释执行,当JVM发现某个方法或代码块运行特别频繁的时候,就会认为这是“热点代码”(Hot Spot Code)。然后JIT会把部分“热点代码”翻译成本地机器相关的机器码,并进行优化,然后再把翻译后的机器码缓存起来,以备下次使用。 由于关于JIT编译和热点检测的内容,我在深入分析Java的编译原理中已经介绍过了,这里就不在赘述,本文主要来介绍下JIT中的优化。JIT优化中最重要的一个就是逃逸分析。 逃逸分析 关于逃逸分析的概念,可以参考对象和数组并不是都在堆上分配内存的。一文,这里简单回顾一下: 逃逸分析的基本行为就是分析对象动态作用域:当一个对象在方法中被定义后,它可能被外部方法所引用,例如作为调用参数传递到其他地方中,称为方法逃逸。 例如以下代码: public static StringBuffer craeteStringBuffer(String s1, String s2) { StringBuffer sb = new StringBuffer(); sb.append(s1); sb.append(s2); return sb; } public static String createStringBuffer(String s1, String s2) { StringBuffer sb = new StringBuffer(); sb.append(s1); sb.append(s2); return sb.toString(); } 第一段代码中的sb就逃逸了,而第二段代码中的sb就没有逃逸。 使用逃逸分析,编译器可以对代码做如下优化: 一、同步省略。如果一个对象被发现只能从一个线程被访问到,那么对于这个对象的操作可以不考虑同步。 二、将堆分配转化为栈分配。如果一个对象在子程序中被分配,要使指向该对象的指针永远不会逃逸,对象可能是栈分配的候选,而不是堆分配。 三、分离对象或标量替换。有的对象可能不需要作为一个连续的内存结构存在也可以被访问到,那么对象的部分(或全部)可以不存储在内存,而是存储在CPU寄存器中。 在Java代码运行时,通过JVM参数可指定是否开启逃逸分析, -XX:+DoEscapeAnalysis : 表示开启逃逸分析 -XX:-DoEscapeAnalysis : 表示关闭逃逸分析 从jdk 1.7开始已经默认开始逃逸分析,如需关闭,需要指定-XX:-DoEscapeAnalysis 同步省略 在动态编译同步块的时候,JIT编译器可以借助逃逸分析来判断同步块所使用的锁对象是否只能够被一个线程访问而没有被发布到其他线程。 如果同步块所使用的锁对象通过这种分析被证实只能够被一个线程访问,那么JIT编译器在编译这个同步块的时候就会取消对这部分代码的同步。这个取消同步的过程就叫同步省略,也叫锁消除。 如以下代码: public void f() { Object hollis = new Object(); synchronized(hollis) { System.out.println(hollis); } } 代码中对hollis这个对象进行加锁,但是hollis对象的生命周期只在f()方法中,并不会被其他线程所访问到,所以在JIT编译阶段就会被优化掉。优化成: public void f() { Object hollis = new Object(); System.out.println(hollis); } 所以,在使用synchronized的时候,如果JIT经过逃逸分析之后发现并无线程安全问题的话,就会做锁消除。 标量替换 标量(Scalar)是指一个无法再分解成更小的数据的数据。Java中的原始数据类型就是标量。相对的,那些还可以分解的数据叫做聚合量(Aggregate),Java中的对象就是聚合量,因为他可以分解成其他聚合量和标量。 在JIT阶段,如果经过逃逸分析,发现一个对象不会被外界访问的话,那么经过JIT优化,就会把这个对象拆解成若干个其中包含的若干个成员变量来代替。这个过程就是标量替换。 public static void main(String[] args) { alloc(); } private static void alloc() { Point point = new Point(1,2); System.out.println("point.x="+point.x+"; point.y="+point.y); } class Point{ private int x; private int y; } 以上代码中,point对象并没有逃逸出alloc方法,并且point对象是可以拆解成标量的。那么,JIT就会不会直接创建Point对象,而是直接使用两个标量int x ,int y来替代Point对象。 以上代码,经过标量替换后,就会变成: private static void alloc() { int x = 1; int y = 2; System.out.println("point.x="+x+"; point.y="+y); } 可以看到,Point这个聚合量经过逃逸分析后,发现他并没有逃逸,就被替换成两个聚合量了。那么标量替换有什么好处呢?就是可以大大减少堆内存的占用。因为一旦不需要创建对象了,那么就不再需要分配堆内存了。 标量替换为栈上分配提供了很好的基础。 栈上分配 在Java虚拟机中,对象是在Java堆中分配内存的,这是一个普遍的常识。但是,有一种特殊情况,那就是如果经过逃逸分析后发现,一个对象并没有逃逸出方法的话,那么就可能被优化成栈上分配。这样就无需在堆上分配内存,也无须进行垃圾回收了。 关于栈上分配的详细介绍,可以参考对象和数组并不是都在堆上分配内存的。。 这里,还是要简单说一下,其实在现有的虚拟机中,并没有真正的实现栈上分配,在对象和数组并不是都在堆上分配内存的。中我们的例子中,对象没有在堆上分配,其实是标量替换实现的。 逃逸分析并不成熟 关于逃逸分析的论文在1999年就已经发表了,但直到JDK 1.6才有实现,而且这项技术到如今也并不是十分成熟的。 其根本原因就是无法保证逃逸分析的性能消耗一定能高于他的消耗。虽然经过逃逸分析可以做标量替换、栈上分配、和锁消除。但是逃逸分析自身也是需要进行一系列复杂的分析的,这其实也是一个相对耗时的过程。 一个极端的例子,就是经过逃逸分析之后,发现没有一个对象是不逃逸的。那这个逃逸分析的过程就白白浪费掉了。 虽然这项技术并不十分成熟,但是他也是即时编译器优化技术中一个十分重要的手段。 参考资料 《深入理解Java虚拟机》 维基百科
技术
# Java
酷游
1月22日
0
17
0
2025-01-22
Java命令学习系列(二)——Jstack
jstack是java虚拟机自带的一种堆栈跟踪工具。 功能 jstack用于生成java虚拟机当前时刻的线程快照。线程快照是当前java虚拟机内每一条线程正在执行的方法堆栈的集合,生成线程快照的主要目的是定位线程出现长时间停顿的原因,如线程间死锁、死循环、请求外部资源导致的长时间等待等。 线程出现停顿的时候通过jstack来查看各个线程的调用堆栈,就可以知道没有响应的线程到底在后台做什么事情,或者等待什么资源。 如果java程序崩溃生成core文件,jstack工具可以用来获得core文件的java stack和native stack的信息,从而可以轻松地知道java程序是如何崩溃和在程序何处发生问题。另外,jstack工具还可以附属到正在运行的java程序中,看到当时运行的java程序的java stack和native stack的信息, 如果现在运行的java程序呈现hung的状态,jstack是非常有用的。 So,jstack命令主要用来查看Java线程的调用堆栈的,可以用来分析线程问题(如死锁)。 线程状态 想要通过jstack命令来分析线程的情况的话,首先要知道线程都有哪些状态,下面这些状态是我们使用jstack命令查看线程堆栈信息时可能会看到的线程的几种状态: NEW,未启动的。不会出现在Dump中。 RUNNABLE,在虚拟机内执行的。 BLOCKED,受阻塞并等待监视器锁。 WATING,无限期等待另一个线程执行特定操作。 TIMED_WATING,有时限的等待另一个线程的特定操作。 TERMINATED,已退出的。 Monitor 在多线程的 JAVA程序中,实现线程之间的同步,就要说说 Monitor。 Monitor是 Java中用以实现线程之间的互斥与协作的主要手段,它可以看成是对象或者 Class的锁。每一个对象都有,也仅有一个 monitor。下 面这个图,描述了线程和 Monitor之间关系,以 及线程的状态转换图: 进入区(Entrt Set):表示线程通过synchronized要求获取对象的锁。如果对象未被锁住,则迚入拥有者;否则则在进入区等待。一旦对象锁被其他线程释放,立即参与竞争。 拥有者(The Owner):表示某一线程成功竞争到对象锁。 等待区(Wait Set):表示线程通过对象的wait方法,释放对象的锁,并在等待区等待被唤醒。 从图中可以看出,一个 Monitor在某个时刻,只能被一个线程拥有,该线程就是 “Active Thread”,而其它线程都是 “Waiting Thread”,分别在两个队列 “ Entry Set”和 “Wait Set”里面等候。在 “Entry Set”中等待的线程状态是 “Waiting for monitor entry”,而在 “Wait Set”中等待的线程状态是 “in Object.wait()”。 先看 “Entry Set”里面的线程。我们称被 synchronized保护起来的代码段为临界区。当一个线程申请进入临界区时,它就进入了 “Entry Set”队列。对应的 code就像: synchronized(obj) { ......... } 调用修饰 表示线程在方法调用时,额外的重要的操作。线程Dump分析的重要信息。修饰上方的方法调用。 locked 目标:使用synchronized申请对象锁成功,监视器的拥有者。 waiting to lock 目标:使用synchronized申请对象锁未成功,在迚入区等待。 waiting on 目标:使用synchronized申请对象锁成功后,释放锁幵在等待区等待。 parking to wait for 目标 locked at oracle.jdbc.driver.PhysicalConnection.prepareStatement - locked (a oracle.jdbc.driver.T4CConnection) at oracle.jdbc.driver.PhysicalConnection.prepareStatement - locked (a oracle.jdbc.driver.T4CConnection) at com.jiuqi.dna.core.internal.db.datasource.PooledConnection.prepareStatement 通过synchronized关键字,成功获取到了对象的锁,成为监视器的拥有者,在临界区内操作。对象锁是可以线程重入的。 waiting to lock at com.jiuqi.dna.core.impl.CacheHolder.isVisibleIn(CacheHolder.java:165) - waiting to lock (a CacheHolder) at com.jiuqi.dna.core.impl.CacheGroup$Index.findHolder at com.jiuqi.dna.core.impl.ContextImpl.find at com.jiuqi.dna.bap.basedata.common.util.BaseDataCenter.findInfo 通过synchronized关键字,没有获取到了对象的锁,线程在监视器的进入区等待。在调用栈顶出现,线程状态为Blocked。 waiting on at java.lang.Object.wait(Native Method) - waiting on (a WorkingThread) at com.jiuqi.dna.core.impl.WorkingManager.getWorkToDo - locked (a WorkingThread) at com.jiuqi.dna.core.impl.WorkingThread.run 通过synchronized关键字,成功获取到了对象的锁后,调用了wait方法,进入对象的等待区等待。在调用栈顶出现,线程状态为WAITING或TIMED_WATING。 parking to wait for park是基本的线程阻塞原语,不通过监视器在对象上阻塞。随concurrent包会出现的新的机制,不synchronized体系不同。 线程动作 线程状态产生的原因 runnable:状态一般为RUNNABLE。 in Object.wait():等待区等待,状态为WAITING或TIMED_WAITING。 waiting for monitor entry:进入区等待,状态为BLOCKED。 waiting on condition:等待区等待、被park。 sleeping:休眠的线程,调用了Thread.sleep()。 Wait on condition 该状态出现在线程等待某个条件的发生。具体是什么原因,可以结合 stacktrace来分析。 最常见的情况就是线程处于sleep状态,等待被唤醒。 常见的情况还有等待网络IO:在java引入nio之前,对于每个网络连接,都有一个对应的线程来处理网络的读写操作,即使没有可读写的数据,线程仍然阻塞在读写操作上,这样有可能造成资源浪费,而且给操作系统的线程调度也带来压力。在 NewIO里采用了新的机制,编写的服务器程序的性能和可扩展性都得到提高。 正等待网络读写,这可能是一个网络瓶颈的征兆。因为网络阻塞导致线程无法执行。一种情况是网络非常忙,几 乎消耗了所有的带宽,仍然有大量数据等待网络读 写;另一种情况也可能是网络空闲,但由于路由等问题,导致包无法正常的到达。所以要结合系统的一些性能观察工具来综合分析,比如 netstat统计单位时间的发送包的数目,如果很明显超过了所在网络带宽的限制 ; 观察 cpu的利用率,如果系统态的 CPU时间,相对于用户态的 CPU时间比例较高;如果程序运行在 Solaris 10平台上,可以用 dtrace工具看系统调用的情况,如果观察到 read/write的系统调用的次数或者运行时间遥遥领先;这些都指向由于网络带宽所限导致的网络瓶颈。(来自http://www.blogjava.net/jzone/articles/303979.html) 线程Dump的分析 原则 结合代码阅读的推理。需要线程Dump和源码的相互推导和印证。 造成Bug的根源往往丌会在调用栈上直接体现,一定格外注意线程当前调用之前的所有调用。 入手点 进入区等待 "d&a-3588" daemon waiting for monitor entry [0x000000006e5d5000] java.lang.Thread.State: BLOCKED (on object monitor) at com.jiuqi.dna.bap.authority.service.UserService$LoginHandler.handle() - waiting to lock (a java.lang.Object) at com.jiuqi.dna.bap.authority.service.UserService$LoginHandler.handle() 线程状态BLOCKED,线程动作wait on monitor entry,调用修饰waiting to lock总是一起出现。表示在代码级别已经存在冲突的调用。必然有问题的代码,需要尽可能减少其发生。 同步块阻塞 一个线程锁住某对象,大量其他线程在该对象上等待。 "blocker" runnable java.lang.Thread.State: RUNNABLE at com.jiuqi.hcl.javadump.Blocker$1.run(Blocker.java:23) - locked (a java.lang.Object) "blockee-11" waiting for monitor entry java.lang.Thread.State: BLOCKED (on object monitor) at com.jiuqi.hcl.javadump.Blocker$2.run(Blocker.java:41) - waiting to lock (a java.lang.Object) "blockee-86" waiting for monitor entry java.lang.Thread.State: BLOCKED (on object monitor) at com.jiuqi.hcl.javadump.Blocker$2.run(Blocker.java:41) - waiting to lock (a java.lang.Object) 持续运行的IO IO操作是可以以RUNNABLE状态达成阻塞。例如:数据库死锁、网络读写。 格外注意对IO线程的真实状态的分析。 一般来说,被捕捉到RUNNABLE的IO调用,都是有问题的。 以下堆栈显示: 线程状态为RUNNABLE。 调用栈在SocketInputStream或SocketImpl上,socketRead0等方法。 调用栈包含了jdbc相关的包。很可能发生了数据库死锁 "d&a-614" daemon prio=6 tid=0x0000000022f1f000 nid=0x37c8 runnable [0x0000000027cbd000] java.lang.Thread.State: RUNNABLE at java.net.SocketInputStream.socketRead0(Native Method) at java.net.SocketInputStream.read(Unknown Source) at oracle.net.ns.Packet.receive(Packet.java:240) at oracle.net.ns.DataPacket.receive(DataPacket.java:92) at oracle.net.ns.NetInputStream.getNextPacket(NetInputStream.java:172) at oracle.net.ns.NetInputStream.read(NetInputStream.java:117) at oracle.jdbc.driver.T4CMAREngine.unmarshalUB1(T4CMAREngine.java:1034) at oracle.jdbc.driver.T4C8Oall.receive(T4C8Oall.java:588) 分线程调度的休眠 正常的线程池等待 "d&a-131" in Object.wait() java.lang.Thread.State: TIMED_WAITING (on object monitor) at java.lang.Object.wait(Native Method) at com.jiuqi.dna.core.impl.WorkingManager.getWorkToDo(WorkingManager.java:322) - locked (a com.jiuqi.dna.core.impl.WorkingThread) at com.jiuqi.dna.core.impl.WorkingThread.run(WorkingThread.java:40) 可疑的线程等待 "d&a-121" in Object.wait() java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) at java.lang.Object.wait(Object.java:485) at com.jiuqi.dna.core.impl.AcquirableAccessor.exclusive() - locked (a com.jiuqi.dna.core.impl.CacheGroup) at com.jiuqi.dna.core.impl.Transaction.lock() 入手点总结 wait on monitor entry: 被阻塞的,肯定有问题 runnable : 注意IO线程 in Object.wait(): 注意非线程池等待 使用 想要学习一个命令,先来看看帮助,使用jstack -help查看帮助: hollis@hos:~$ jstack -help Usage: jstack [-l] (to connect to running process) jstack -F [-m] [-l] (to connect to a hung process) jstack [-m] [-l] (to connect to a core file) jstack [-m] [-l] [server_id@] (to connect to a remote debug server) Options: -F to force a thread dump. Use when jstack does not respond (process is hung) -m to print both java and native frames (mixed mode) -l long listing. Prints additional information about locks -h or -help to print this help message -F当’jstack [-l] pid’没有相应的时候强制打印栈信息 -l长列表. 打印关于锁的附加信息,例如属于java.util.concurrent的ownable synchronizers列表. -m打印java和native c/c++框架的所有栈信息. -h | -help打印帮助信息 pid 需要被打印配置信息的java进程id,可以用jps查询. 首先,我们分析这么一段程序的线程情况: /** * @author hollis */ public class JStackDemo1 { public static void main(String[] args) { while (true) { //Do Nothing } } } 先是有jps查看进程号: hollis@hos:~$ jps 29788 JStackDemo1 29834 Jps 22385 org.eclipse.equinox.launcher_1.3.0.v20130327-1440.jar 然后使用jstack 查看堆栈信息: hollis@hos:~$ jstack 29788 2015-04-17 23:47:31 ...此处省略若干内容... "main" prio=10 tid=0x00007f197800a000 nid=0x7462 runnable [0x00007f197f7e1000] java.lang.Thread.State: RUNNABLE at javaCommand.JStackDemo1.main(JStackDemo1.java:7) 我们可以从这段堆栈信息中看出什么来呢?我们可以看到,当前一共有一条用户级别线程,线程处于runnable状态,执行到JStackDemo1.java的第七行。 看下面代码: /** * @author hollis */ public class JStackDemo1 { public static void main(String[] args) { Thread thread = new Thread(new Thread1()); thread.start(); } } class Thread1 implements Runnable{ @Override public void run() { while(true){ System.out.println(1); } } } 线程堆栈信息如下: "Reference Handler" daemon prio=10 tid=0x00007fbbcc06e000 nid=0x286c in Object.wait() [0x00007fbbc8dfc000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on (a java.lang.ref.Reference$Lock) at java.lang.Object.wait(Object.java:503) at java.lang.ref.Reference$ReferenceHandler.run(Reference.java:133) - locked (a java.lang.ref.Reference$Lock) 我们能看到: 线程的状态: WAITING 线程的调用栈 线程的当前锁住的资源: 线程当前等待的资源: 为什么同时锁住的等待同一个资源: 线程的执行中,先获得了这个对象的 Monitor(对应于 locked )。当执行到 obj.wait(), 线程即放弃了 Monitor的所有权,进入 “wait set”队列(对应于 waiting on )。 死锁分析 学会了怎么使用jstack命令之后,我们就可以看看,如何使用jstack分析死锁了,这也是我们一定要掌握的内容。 啥叫死锁? 所谓死锁: 是指两个或两个以上的进程在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞的现象,若无外力作用,它们都将无法推进下去。此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程。 说白了,我现在想吃鸡蛋灌饼,桌子上放着鸡蛋和饼,但是我和我的朋友同时分别拿起了鸡蛋和病,我手里拿着鸡蛋,但是我需要他手里的饼。他手里拿着饼,但是他想要我手里的鸡蛋。就这样,如果不能同时拿到鸡蛋和饼,那我们就不能继续做后面的工作(做鸡蛋灌饼)。所以,这就造成了死锁。 看一段死锁的程序: package javaCommand; /** * @author hollis */ public class JStackDemo { public static void main(String[] args) { Thread t1 = new Thread(new DeadLockclass(true));//建立一个线程 Thread t2 = new Thread(new DeadLockclass(false));//建立另一个线程 t1.start();//启动一个线程 t2.start();//启动另一个线程 } } class DeadLockclass implements Runnable { public boolean falg;// 控制线程 DeadLockclass(boolean falg) { this.falg = falg; } public void run() { /** * 如果falg的值为true则调用t1线程 */ if (falg) { while (true) { synchronized (Suo.o1) { System.out.println("o1 " + Thread.currentThread().getName()); synchronized (Suo.o2) { System.out.println("o2 " + Thread.currentThread().getName()); } } } } /** * 如果falg的值为false则调用t2线程 */ else { while (true) { synchronized (Suo.o2) { System.out.println("o2 " + Thread.currentThread().getName()); synchronized (Suo.o1) { System.out.println("o1 " + Thread.currentThread().getName()); } } } } } } class Suo { static Object o1 = new Object(); static Object o2 = new Object(); } 当我启动该程序时,我们看一下控制台: 我们发现,程序只输出了两行内容,然后程序就不再打印其它的东西了,但是程序并没有停止。这样就产生了死锁。 当线程1使用synchronized锁住了o1的同时,线程2也是用synchronized锁住了o2。当两个线程都执行完第一个打印任务的时候,线程1想锁住o2,线程2想锁住o1。但是,线程1当前锁着o1,线程2锁着o2。所以两个想成都无法继续执行下去,就造成了死锁。 然后,我们使用jstack来看一下线程堆栈信息: Found one Java-level deadlock: ============================= "Thread-1": waiting to lock monitor 0x00007f0134003ae8 (object 0x00000007d6aa2c98, a java.lang.Object), which is held by "Thread-0" "Thread-0": waiting to lock monitor 0x00007f0134006168 (object 0x00000007d6aa2ca8, a java.lang.Object), which is held by "Thread-1" Java stack information for the threads listed above: =================================================== "Thread-1": at javaCommand.DeadLockclass.run(JStackDemo.java:40) - waiting to lock (a java.lang.Object) - locked (a java.lang.Object) at java.lang.Thread.run(Thread.java:745) "Thread-0": at javaCommand.DeadLockclass.run(JStackDemo.java:27) - waiting to lock (a java.lang.Object) - locked (a java.lang.Object) at java.lang.Thread.run(Thread.java:745) Found 1 deadlock. 哈哈,堆栈写的很明显,它告诉我们 Found one Java-level deadlock,然后指出造成死锁的两个线程的内容。然后,又通过 Java stack information for the threads listed above来显示更详细的死锁的信息。 他说 Thread-1在想要执行第40行的时候,当前锁住了资源,但是他在等待资源 Thread-0在想要执行第27行的时候,当前锁住了资源,但是他在等待资源 由于这两个线程都持有资源,并且都需要对方的资源,所以造成了死锁。 原因我们找到了,就可以具体问题具体分析,解决这个死锁了。 其他 虚拟机执行Full GC时,会阻塞所有的用户线程。因此,即时获取到同步锁的线程也有可能被阻塞。 在查看线程Dump时,首先查看内存使用情况。
技术
# Java
酷游
1月22日
0
15
0
2025-01-22
Java 中负数的绝对值不一定是正数
这几乎是每个人都知道的。 在Java中,想要获得有个数字的绝对值,可以使用java.lang.Math中的abs方法,这个类共有4个重载的abs方法,分别是: public static int abs(int a) { return (a < 0) ? -a : a; } public static long abs(long a) { return (a < 0) ? -a : a; } public static float abs(float a) { return (a
技术
# Java
酷游
1月22日
0
15
0
2025-01-22
class卸载、热替换和Tomcat的热部署的分析
一 class的热替换 ClassLoader中重要的方法 loadClassClassLoader.loadClass(...) 是ClassLoader的入口点。当一个类没有指明用什么加载器加载的时候,JVM默认采用AppClassLoader加载器加载没有加载过的class,调用的方法的入口就是loadClass(…)。如果一个class被自定义的ClassLoader加载,那么JVM也会调用这个自定义的ClassLoader.loadClass(…)方法来加载class内部引用的一些别的class文件。重载这个方法,能实现自定义加载class的方式,抛弃双亲委托机制,但是即使不采用双亲委托机制,比如java.lang包中的相关类还是不能自定义一个同名的类来代替,主要因为JVM解析、验证class的时候,会进行相关判断。 defineClass系统自带的ClassLoader,默认加载程序的是AppClassLoader,ClassLoader加载一个class,最终调用的是defineClass(…)方法,这时候就在想是否可以重复调用defineClass(…)方法加载同一个类(或者修改过),最后发现调用多次的话会有相关错误: java.lang.LinkageError attempted duplicate class definition 所以一个class被一个ClassLoader实例加载过的话,就不能再被这个ClassLoader实例再次加载(这里的加载指的是,调用了defileClass(…)放方法,重新加载字节码、解析、验证。)。而系统默认的AppClassLoader加载器,他们内部会缓存加载过的class,重新加载的话,就直接取缓存。所与对于热加载的话,只能重新创建一个ClassLoader,然后再去加载已经被加载过的class文件。 二 class卸载 在Java中class也是可以unload。JVM中class和Meta信息存放在PermGen space区域。如果加载的class文件很多,那么可能导致PermGen space区域空间溢出。引起:java.lang.OutOfMemoryErrorPermGen space. 对于有些Class我们可能只需要使用一次,就不再需要了,也可能我们修改了class文件,我们需要重新加载 newclass,那么oldclass就不再需要了。那么JVM怎么样才能卸载Class呢。 JVM中的Class只有满足以下三个条件,才能被GC回收,也就是该Class被卸载(unload): 该类所有的实例都已经被GC。 加载该类的ClassLoader实例已经被GC。 该类的java.lang.Class对象没有在任何地方被引用。 GC的时机我们是不可控的,那么同样的我们对于Class的卸载也是不可控的。 1、有启动类加载器加载的类型在整个运行期间是不可能被卸载的(jvm和jls规范). 2、被系统类加载器和标准扩展类加载器加载的类型在运行期间不太可能被卸载,因为系统类加载器实例或者标准扩展类的实例基本上在整个运行期间总能直接或者间接的访问的到,其达到unreachable的可能性极小.(当然,在虚拟机快退出的时候可以,因为不管ClassLoader实例或者Class(java.lang.Class)实例也都是在堆中存在,同样遵循垃圾收集的规则). 3、被开发者自定义的类加载器实例加载的类型只有在很简单的上下文环境中才能被卸载,而且一般还要借助于强制调用虚拟机的垃圾收集功能才可以做到.可以预想,稍微复杂点的应用场景中(尤其很多时候,用户在开发自定义类加载器实例的时候采用缓存的策略以提高系统性能),被加载的类型在运行期间也是几乎不太可能被卸载的(至少卸载的时间是不确定的). 综合以上三点, 一个已经加载的类型被卸载的几率很小至少被卸载的时间是不确定的.同时,我们可以看的出来,开发者在开发代码时候,不应该对虚拟机的类型卸载做任何假设的前提下来实现系统中的特定功能. 三 Tomcat中关于类的加载与卸载 Tomcat中与其说有热加载,还不如说是热部署来的准确些。因为对于一个应用,其中class文件被修改过,那么Tomcat会先卸载这个应用(Context),然后重新加载这个应用,其中关键就在于自定义ClassLoader的应用。这里有篇文章很好的介绍了tomcat中对于ClassLoader的应用。 Tomcat启动的时候,ClassLoader加载的流程: 1 Tomcat启动的时候,用system classloader即AppClassLoader加载{catalina.home}/bin里面的jar包,也就是tomcat启动相关的jar包。 2 Tomcat启动类Bootstrap中有3个classloader属性,catalinaLoader、commonLoader、sharedLoader在Tomcat7中默认他们初始化都为同一个StandardClassLoader实例。具体的也可以在{catalina.home}/bin/bootstrap.jar包中的catalina.properites中进行配置。 3 StandardClassLoader加载{catalina.home}/lib下面的所有Tomcat用到的jar包。 4 一个Context容器,代表了一个app应用。Context–>WebappLoader–>WebClassLoader。并且Thread.contextClassLoader=WebClassLoader。应用程序中的jsp文件、class类、lib/*.jar包,都是WebClassLoader加载的。 当Jsp文件修改的时候,Tomcat更新步骤: 1 但访问1.jsp的时候,1.jsp的包装类JspServletWrapper会去比较1.jsp文件最新修改时间和上次的修改时间,以此判断1.jsp是否修改过。 2 1.jsp修改过的话,那么jspservletWrapper会清除相关引用,包括1.jsp编译后的servlet实例和加载这个servlet的JasperLoader实例。 3 重新创建一个JasperLoader实例,重新加载修改过后的1.jsp,重新生成一个Servlet实例。 4 返回修改后的1.jsp内容给用户。 当app下面的class文件修改的时候,Tomcat更新步骤: 1 Context容器会有专门线程监控app下面的类的修改情况。 2 如果发现有类被修改了。那么调用Context.reload()。清楚一系列相关的引用和资源。 3 然后创新创建一个WebClassLoader实例,重新加载app下面需要的class。 在一个有一定规模的应用中,如果文件修改多次,重启多次的话,java.lang.OutOfMemoryErrorPermGen space这个错误的的出现非常频繁。主要就是因为每次重启重新加载大量的class,超过了PermGen space设置的大小。两种情况可能导致PermGen space溢出。 一、GC(Garbage Collection)在主程序运行期对PermGen space没有进行清理(GC的不可控行), 二、重启之前WebClassLoader加载的class在别的地方还存在着引用。 原文地址:http://www.blogjava.net/heavensay/archive/2012/11/07/389685.html
技术
# Java
酷游
1月22日
0
3
0
上一页
1
...
35
36
37
...
39
下一页
易航博客